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Abstract 
 

In this paper, He's amplitude-frequency formulation is used to obtain a periodic 
solution of a nonlinear oscillator. We illustrate that He's amplitude-frequency 
formulation is very effective and convenient and does not require linearization or 
small perturbation. The obtained results are valid for the whole solution domain 
with high accuracy. 
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1- Introduction 
 
Very recently, various kinds of analytical methods and numerical methods have 
been used to handle the nonlinear problems without possible small parameters.  
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Traditional perturbation methods have many shortcoming and they are not valid 
for strongly nonlinear oscillators. To overcome the shortcomings, many new 
techniques have been proposed for dealing with the nonlinear oscillators, for 
example, the variational iteration method [1-3], the homotopy perturbation 
method [4-7], and the energy balance method [8-11]. The aim of the work is to 
show haw to apply the amplitude-frequency formulation developed recently by He 
[12-13] and used later by many authors [14-19] to solve the nonlinear oscillator’s 
problems. 
 
 

2- He’s amplitude-frequency formulation 
 
We consider a generalized nonlinear oscillator in the form: 

.0)0(,)0(     ,0)( ===+ uAuufu &&&                               (1) 
It can be seen that since no small parameter exist in equation (1), besides the 
equation involves discontinuity, we cannot apply the traditional perturbation 
methods directly. Because of the fact that the amplitude-frequency formulation 
does not require a small parameter and a linear term in the differential equation as 
well, Eq. (1) can be approximately solved using amplitude-frequency formulation. 
According to amplitude-frequency formulation for Eq. (1), we use two trial 
functions ,cos 11 tAu ω=  and ,cos 22 tAu ω=  where 1ω  and 2ω  can be freely 
chosen, generally we choose 11 =ω  where ωω =2 , and ω  is the frequency of 
the nonlinear oscillator. Substituting 1u  and 2u  into Eq. (1) we obtain, 
respectively, the following residuals. 

),cos(cos)( 11
2
11 tAftAtR ωωω +−=                                   (2) 

and  
).cos(cos)( 22

2
22 tAftAtR ωωω +−=                                  (3) 

Ji-Huan He suggested the following amplitude-frequency formulation in Ref. [20]   
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Geng and Cai [21] suggested a modification, which is 
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where 1T  and 2T  are the periods of the trial solutions, 1u  and 2u , respectively, 
N  is generally chosen as 12=N . and the phase of the residuals is .6/π   
In 2008, Ji-Huan He improved the formulation, which reads [12, 13]  
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Where 
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3- Applications 
 
In order to assess the accuracy of He's amplitude-frequency formulation for 
solving nonlinear equations and to compare it with the numerical solution, we will 
consider the following examples. 
 

3-1 Example 1 
 

Tapered beams can model engineering structures which require a variable 
stiffness along the length, such as moving arms and turbine blades [22-24]. In 
dimensionless form, the governing differential equation corresponding to 
fundamental vibration mode of a tapper beam is given by [24]  
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where u  is displacement and 1ε  and 2ε  are arbitrary constants. 
According to He's amplitude-frequency formulation, we choose two trial functions 

tAtu cos)(1 =  and tAtu ωcos)(2 = , where ω  is assumed to be the frequency of 
the nonlinear oscillator. Substituting the above trial functions into Eq. (9) results 
in, respectively, the following residuals 
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If, by chance, 1u  or ,2u  is chosen to be the exact solution, then the residual, 
Eq. (10) or Eq. (11), is vanishing completely. In order to use He's 
amplitude-frequency formulation, we set  
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where π21 =T  and ./22 ωπ=T  
 
Applying He's amplitude-frequency formulation, we have 
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i. e.  
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Hence, the approximate solution can be readily obtained 
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which agrees very well with the numerical integration solution using the 
fourth-order Runge-Kutta method as shown in Fig. 1 (a-d). 

   1;1;1.0)( 21 === Aa εε            2;1;1.0)( 21 === Ab εε  
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     1;2;1)( 21 === Ac εε         5;1;1.0)( 21 === Ad εε  

    Fig. 1 Comparison of the approximate solution (- - -) with the numerical solution (—). 

 

3-2 Example 2 
 

It is known that the free vibrations of an autonomous conservative oscillator with 
inertia and static type fifth-order non-linearities is expressed by [25-27]: 
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The initial conditions for Eq. (17) are given by Au =)0(  and ,0/ =dtdu  where 
A represents amplitude of the oscillation. Motion is assumed to start from the 
position of maximum displacement with zero initial velocity. λ  is an integer 
which may take values of 1=λ , 0  or 1− , and 1ε , 2ε , 3ε , and 4ε  are 
positive parameters. 
Similarly we choose tAtu cos)(1 =  and tAtu ωcos)(2 =  as trial functions, this 
leads to the following residuals 
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In view of Eq. (5), we have 
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i. e.  
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Hence, the approximate solution can be readily obtained 
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Table 1 
Comparison of He's amplitude-frequency formulation (AFF) with energy balance 
method (EBM) [27] for ,1=λ  1=A   

Mode 1ε  2ε  3ε  4ε  AFFω  ]27[EBMω  

1 0.326845 0.129579 0.232598 0.087584 1.01504 1.01235 
2 1.642033 0.913055 0.313561 0.204297 0.823214 0.81295 
3 4.051486 1.665232 0.281418 0.149677 0.622926 0.614174 
4 8.205578 3.145368 0.272313 0.133708 0.474087 0.466614 

 
The values of dimensionless parameters 1ε , 2ε , 3ε  and 4ε  associated with 
each of the four calculation modes are shown in Table 1 [25]. 
Additionally, the comparison between these methodologies can be found in Fig. 
2(a-d). It has been shown that the results of amplitude-frequency formulation are 
in good agreement with those obtained from the results of energy balance method 
[27] as shown in table 1 and Fig. 2(a-d). 

                    (a)     mode 1                              (b)     mode 2 
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(c)     mode 3                              (d)     mode 4 

Fig. 2  The Comparison between The results of AFF (- - -) and EBM (—) 

with λ=1, A=1 for modes 1-4.  

 
 

4- Conclusion 
 

In this work, He's amplitude-frequency formulation is proved to be a very 
ingenious and effective method for solving nonlinear oscillator problems. We 
showed that the analytical approximation is obtained easily and elegantly by this 
method. The analytical approximation obtained by this new method is valid for 
the whole solution domain with high accuracy. 
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